Современная наука и свобода

Лекция
21 апреля 2015
19:30
Культурный центр ЗИЛ
12+
726
1

Описание

Добавить в календарь

Рождение современной науки в XVII веке круто изменило ее историю и географию. В предыдущие века в Европе осваивали научно-технические инновации, родившиеся в других цивилизациях – античной, китайской, индийской, исламской. А начиная с XVII века наука, ускорив свое развитие раз в сто, вплоть до века XX была явлением исключительно европейским. Распространившись по всей Европе, от Италии до Голландии и от Англии до России, современная наука, однако, не нашла себе места в культурах Востока. Ситуация еще более усугубилась, когда наука стала источником новых технологических изобретений, начиная с изобретения телеграфа (П. Шиллинг, 1832, в России; Ч. Уитстон и В. Кук, 1837, в Англии).

Загадка рождения современной науки, связанная с утверждением достоинства и свободы человека как основных предпосылок развития, дает возможность исследовать судьбы различных цивилизаций и их взаимодействие в мировой истории.

Современная наука и свобода

Лекторий
1:39:30

Фрагменты из книги Геннадия Горелика «Кто изобрел современную физику? От маятника Галилея до квантовой гравитации», попавшей в шорт-лист премии «Просветитель».

О математико-музыкальной гармонии

Еще Пифагор в Древней Греции вслушивался в звучание струн в зависимости от их длин и сделал поразительное открытие: если длины струн относятся как целые числа 1:2, 2:3, 3:4, то их совместное звучание гармонично. Свое открытие Пифагор обобщил до принципа «Все есть число», провозгласив ключевую роль математики в устройстве мира. А что касается музыкальной гармонии, то со времен Пифагоровых считалось, что «гармоничные» числа должны быть небольшими. Отец Галилея, однако, в оценке созвучий верил собственным ушам и, обнаружив, что отношение 16:25 тоже дает благозвучие, смело отверг авторитетное мнение. А сын получил от отца урок поиска истины, в котором сошлись эксперимент, математика, свобода мысли и доверие к собственным чувствам и разуму.

О неловкости рук

Под впечатлением от физики Архимеда Галилей предположил, что быстрота падения, как и плавучесть, определяется не тяжестью тела, а его плотностью, то есть тяжестью единицы объема. Если взять два шара одинакового размера, сделанные из дерева и из свинца, и выпустить их из рук в воде, то деревянный шар не то что будет падать медленнее свинцового, он станет подниматься. А если дать им падать в воздухе? Оказалось, что деревянный шар вначале немного опередил свинцовый, но затем тяжелый догнал и перегнал его. Это Галилей зафиксировал в своей рукописи «О движении», которую… не опубликовал, – результат его эксперимента опровергал и закон Аристотеля, и собственную гипотезу. Тут надо было думать.

Этот странный рукописный результат побудил одного знаменитого историка сказать, что Галилей такого опыта вообще не делал; то был якобы риторический прием. Однако в наше время опыт воспроизвели, и результат совпал с Галилеевым. Объяснение нашлось не физическое, а физиологическое. Рука, удерживающая тяжелый шар, сжимает его крепче, чем другая рука – легкий, и крепче сжатой руке требуется немного большее время, чтобы разжаться, получив команду от головы. Поэтому легкий шар начинает свое падение раньше на то самое «немного».

О такой неловкости рук Галилей вряд ли догадывался, он думал о физике. Думал десять лет и понял, что изучать свободное падение впрямую не получится – слишком быстро оно происходит. Если шар падает с небольшой высоты, не успеваешь глазом моргнуть, не то что измерить. А падая с большой высоты, шар наберет большую скорость, и, значит, увеличится сопротивление воздуха. Всякий, державший в руках веер, знает: чем быстрее им махать, тем труднее.

О не наглядных понятиях в физике

Пустота была первым важным не наглядным понятием в физике. Затем появились другие – всемирное тяготение, электромагнитное поле, атомы, электроны, кванты света… Никто их не видел и не щупал, но лишь на основе этих не наглядных понятий стали возможны технические изобретения, преобразившие обыденную жизнь. И нынешние физики применяют эти понятия столь же уверенно, как самые обычные слова «стол» и «стул», «любовь» и «дружба».

Изобрести фундаментальную физику Галилею помогли его природные таланты и вера в познаваемость мира, в фундаментальность мироздания.

Сейчас, когда наука и основанная на ней техника достигли гигантских успехов, познаваемость мира кажется очевидной, но до всех этих успехов – в шестнадцатом веке – ситуация была совершенно иной. Тогда сама власть законов в природе отнюдь не была общепризнанной. С начала размышлений Галилея и его первых опытов до публикации итогов работы прошло около полувека. Полвека настойчивых поисков истины – и такой простой закон, «ежу понятный», как скажут нынешние школьники.

А Галилей считал, что «лишь открыл путь и способы исследования, которыми воспользуются более проницательные умы, чтобы проникнуть в более удаленные области обширной и превосходной науки», и что «таким образом познание может охватить все области природных явлений».

О ногах и голове астрономии

Система Птолемея исправно служила астрономам много столетий, прежде чем в середине шестнадцатого века Коперник поставил ее с ног на голову, по мнению подавляющего большинства коллег, или с головы на ноги, как сочли совсем немногие. Коперник, в сущности, спросил, как выглядело бы звездное небо, если смотреть с Солнца. И ответил гелиоцентрической системой, столь же полно описав движения на небе, как и система Птолемея. Коперник использовал прежний способ описания – большие и малые небесные сферы, только в центре поместил Солнце, а не Землю. Картина небесных движений радикально изменилась: сфера неподвижных звезд и сама стала неподвижной, Земля вращалась вокруг своей оси и вокруг Солнца, став одной из планет, также вращавшихся вокруг Солнца. Лишь Луна осталась в прежней роли – так же вращалась вокруг Земли. И картина неба, наблюдаемая с Земли, разумеется, осталась прежней. Только астрономы понимали, что эта – реально наблюдаемая – картина рассчитывается двумя разными математическими теориями.

Система Коперника настолько отлична от птолемеевской, что непостижимой кажется сама исходная мысль: посмотреть на Вселенную с солнечной точки зрения. Помогла Копернику, похоже, его гуманитарная образованность. Он прекрасно знал древнегреческий язык, и труд Птолемея был для него лишь одной из античных книг. Из других книг он знал о древнем греке Аристархе Самосском, который сумел оценить количественно размер Солнца, много больший размера Земли, и предположил, что Земля вращается вокруг Солнца – малое вокруг большого. Для Птолемея, как и других древних астрономов, этот довод никак не перевешивал очевидную неподвижность Земли, и он гелиоцентрическую идею даже не рассматривал. Почему и как Коперник решил эту идею исследовать, почему его интуиция взлетела на такую странную высоту, сам он не объяснил. Ясно лишь то, что в великом Птолемее он видел коллегу, а не безошибочного гения.

О скорости света и скорости звука

Галилей не виноват, что на самом деле скорость света больше скорости звука в миллион раз. Если бы он это заподозрил, то мог сообразить, что земных миль для его опыта не хватит, и вспомнил бы открытые им спутники Юпитера. Ведь, вращаясь, спутник играет роль фонаря, который открывается, выходя из тени Юпитера, и закрывается, заходя в его тень. Конечно, впрямую для опыта Галилея такой фонарь не годится – открывается безо всякой команды через равные интервалы времени. Но опыт можно изменить, заметив, что земной наблюдатель не сидит на месте, даже вглядываясь в телескоп: вместе с телескопом и с планетой Земля он движется вокруг Солнца. Когда наблюдатель приближается к Юпитеру, каждый следующий «восход» спутника наблюдается раньше «положенного» (усредненного), потому что первому лучу от спутника надо пройти меньшее расстояние до Земли. Первый луч прибудет раньше на долю периода, пропорциональную скорости Земли и обратно пропорциональную скорости света. Значит, скорость света можно вычислить, измеряя опережение (или запаздывание) восхода спутника Юпитера.

До такого способа сам Галилей не додумался, хотя в его духе были и земные применения астрономии, и приложение земной физики к пониманию небесных явлений. Он же предложил использовать телескоп в земном опыте по измерению скорости света. А открыв спутники Юпитера и измерив периоды их обращения, разглядел в этом небесные часы «с боем» в момент восхода каждого спутника. Такие часы, доступные всем (у кого есть телескоп), сообразил Галилей, можно использовать для определения географической долготы. А это было жизненно важно для дальнего мореплавания и для экономики.

Так что отец современной физики не только изобрел ее, но и продемонстрировал взаимосвязь науки, техники и экономики.

Об авторстве

Вернемся из сослагательной истории в реальную, где закон всемирного тяготения носит имя Ньютона. Это непростая и невеселая история, в которой неустанно обсуждают вопрос, по праву ли этот закон носит его имя. При всей мировой славе сэра Исаака Ньютона, начавшейся при его жизни, ему давно предъявляют моральную претензию в том, что он якобы не поделился славой с Робертом Гуком, выдающимся физиком-экспериментатором. Тот очень даже претендовал на соавторство, считая, что именно он сообщил Ньютону ключевую гипотезу: притяжение планет к Солнцу, обратно пропорциональное квадрату расстояния, определяет эллиптическую форму орбиты. Сам он это доказать не мог и в 1679 году обратился за помощью к Ньютону, уже славному своей математической мощью.

История надежно подтверждает и это обращение, и тот факт, что лишь после него Ньютон написал свой знаменитый труд «Математические начала натуральной философии», или просто «Начала», где изложил и теорию гравитации, и общую теорию движения. Однако Ньютон претензию Гука на соавторство отвергал, указывая, что о притяжении, обратно пропорциональном квадрату расстояния, говорили до Гука, начиная с Буйо, что вообще дело не в словесных гипотезах, а в точных количественных соотношениях, и, наконец, что сам он – Ньютон – открыл закон всемирного тяготения задолго до письма Гука, но об этом не сообщал из-за неправильного значения радиуса Земли, которое он тогда брал в свои вычисления.

В феврале 2015 стартовал цикл лекций финалистов и лауреатов премии «Просветитель» сезона-2014. Темы лекций относятся к разным областям науки: биологии, физике, истории и культурологии. Лекторы известные ученые и авторы научно-популярных книг, способные рассказывать о самых сложных материях захватывающе интересно. Лекции будут проходить в течение трех месяцев в Лектории Политехнического музея в Культурном центре ЗИЛ в 19:30.